Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
In Situ Synchrotron X‐Ray Diffraction Analysis of Phase Transformation in Epitaxial Metastable hcp Nickel Thin Films, Prepared via Plasma‐Enhanced Atomic Layer Deposition
Advanced Materials Interfaces  (IF6.147),  Pub Date : 2018-10-23, DOI: 10.1002/admi.201800957
Pouyan Motamedi,Ken Bosnick,Ken Cadien,James D. Hogan

Ultrathin metal films have a wide variety of applications, especially in microelectronics. A key method to deposit these films is plasma‐enhanced atomic layer deposition (PEALD), which is known for its ability to deposit thin films conformally and at relatively low temperatures. Building on the recent work, an improved recipe is reported on for the development of nickel PEALD technology, through which fully epitaxial nickel thin films are deposited. The effect of continuous heating on the phase structure and agglomeration in the metastable thin films is investigated in this paper. The variations of the phase structure are monitored via in situ synchrotron X‐ray diffraction, as well as optical roughness analysis. The temperature windows for phase transformation and particle formation are determined. It is noted that, after the hcp‐to‐fcc transformation and particle coalescence processes are complete, the particles reshape to acquire the thermodynamically stable shapes dictated by the Wulff theorem. Additionally, a crystallographic orientation relationship between the fcc particles and the sapphire substrate is observed, i.e., Ni (111)||Sapphire(002).