Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Dexamethasone-Loaded Ureasil Hydrophobic Membrane for Bone Guided Regeneration
Pharmaceutics  (IF6.321),  Pub Date : 2022-05-10, DOI: 10.3390/pharmaceutics14051027
Rafaella Moreno Barros, Camila Garcia Da Silva, Kammila Martins Nicolau Costa, Arnóbio A. Da Silva-Junior, Cássio Rocha Scardueli, Rosemary Adriana Chiérici Marcantonio, Leila Aparecida Chiavacci, João Augusto Oshiro-Junior

Physical barrier membranes have been used to release active substances to treat critical bone defects; however, hydrophilic membranes do not present a prolonged release capacity. In this sense, hydrophobic membranes have been tested. Thus, this study aimed to develop hydrophobic membranes based on mixtures of ureasil–polyether-type materials containing incorporated dexamethasone (DMA) for the application in guided bone regeneration. The physicochemical characterization and biological assays were carried out using small-angle X-ray scattering (SAXS), an in vitro DMA release study, atomic force microscopy (AFM), a hemolysis test, and in vivo bone formation. The swelling degree, SAXS, and release results revealed that the u-PPO400/2000 membrane in the proportion of 70:30 showed swelling (4.69% ± 0.22) similar to the proportions 90:10 and 80:20, and lower than the proportion 60:40 (6.38% ± 0.49); however, an equal release percentage after 134 h was observed between the proportions 70:30 and 60:40. All u-PPO materials presented hemocompatibility (hemolysis ≤2.8%). AFM results showed that the treatments with or without DMA did not present significant differences, revealing a flat/smooth surface, with no pores and/or crystalline precipitates. Finally, in vivo results revealed that for both the commercial hydrophilic membrane and u-PPO400/2000 (70:30) after 60 days, the bone formation volume was 21%. In conclusion, hybrid membranes present unique characteristics for treating critical bone defects, considering the delayed and prolonged release results associated with the physical barrier capacity.