Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Genomic population structure and local adaptation of the wild strawberry Fragaria nilgerrensis.
Horticulture Research  (IF6.793),  Pub Date : 2022-01-19, DOI: 10.1093/hr/uhab059
Yuxi Hu,Chao Feng,Lihua Yang,Patrick P Edger,Ming Kang

The crop wild relative, Fragaria nilgerrensis, is adapted to a variety of diverse habitats across its native range in China. Thus, discoveries made in this species could serve useful to guide the development of new superior strawberry cultivars that are resilient to new or variable environments. However, the genetic diversity and genetic architecture of traits in this species underlying important adaptive traits remain poorly understood. Here, we used whole-genome resequencing data from 193 F. nilgerrensis individuals spanning the distribution range in China to investigate the genetic diversity, population structure and the genomic basis of local adaptation. We identified four genetic groups, with the western group located in Hengduan Mountains exhibited the highest genetic diversity. Redundancy analysis suggests that both environment and geographic variables shaped a significant proportion of genomic variation. Our analyses revealed that the environmental difference explains more of the observed genetic variation than geographic distance. This suggests that adaptation to distinct habitats, unique combination of abiotic factors, likely drove genetic differentiation. Lastly, by implementing selective sweeps scans and genome-environment association analysis throughout the genome, we identified the genetic variation associated with local adaptation and investigated the functions of putative candidate genes in F. nilgerrensis.