Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
A global synthesis of soil denitrification: Driving factors and mitigation strategies
Agriculture, Ecosystems & Environment  (IF5.567),  Pub Date : 2022-01-05, DOI: 10.1016/j.agee.2021.107850
Baobao Pan, Longlong Xia, Shu Kee Lam, Enli Wang, Yushu Zhang, Arvin Mosier, Deli Chen

Dinitrogen (N2) and nitrous oxide (N2O) produced via denitrification may represent major nitrogen (N) loss in terrestrial ecosystems. A global assessment of soil denitrification rate, N2O/(N2O+N2) ratio, and their driving factors and mitigation strategies is lacking. We conducted a global synthesis using 225 studies (3367 observations) to fill this knowledge gap. We found that daily N loss through soil denitrification varied with ecosystems and averaged 0.25 kg N ha−1. The average emission factor of denitrification (EFD) was 4.8%. The average N2O/(N2O+N2) ratio from soil denitrification was 0.33. Soil denitrification rate was positively related to soil water-filled pore space (WFPS) (p < 0.01), nitrate (NO3-) content (p < 0.05) and soil temperature (p < 0.01), and decreased with higher soil oxygen content (p < 0.01). N2 emissions increased with latitude (p < 0.05), WFPS (p < 0.01) and soil mineral N (p < 0.05) but decreased with soil oxygen content (p < 0.05). The N2O/(N2O+N2) ratio increased with soil oxygen content (p < 0.01) but decreased with organic carbon (C) (p < 0.05), C/N ratio (p < 0.01), soil pH (p < 0.05) and WFPS (p < 0.01). We also found that optimizing N application rates, using ammonium-based fertilizers compared to nitrate-based fertilizers, biochar amendment, and application of nitrification inhibitors could effectively reduce soil denitrification rate and associated N2 emissions. These findings highlight that N loss via soil denitrification and N2 emissions cannot be neglected, and that mitigation strategies should be adopted to reduce N loss and improve N use efficiency. Our study presents a comprehensive data synthesis for large-scale estimations of denitrification and the refinement of relevant parameters used in the submodels of denitrification in process-based models.