Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
First-in-Class Inhibitors of the Ribosomal Oxygenase MINA53
Journal of Medicinal Chemistry  (IF7.446),  Pub Date : 2021-11-29, DOI: 10.1021/acs.jmedchem.1c00605
Radosław P. Nowak, Anthony Tumber, Eline Hendrix, Mohammad Salik Zeya Ansari, Manuela Sabatino, Lorenzo Antonini, Regina Andrijes, Eidarus Salah, Nicola Mautone, Francesca Romana Pellegrini, Klemensas Simelis, Akane Kawamura, Catrine Johansson, Daniela Passeri, Roberto Pellicciari, Alessia Ciogli, Donatella Del Bufalo, Rino Ragno, Mathew L. Coleman, Daniela Trisciuoglio, Antonello Mai, Udo Oppermann, Christopher J. Schofield, Dante Rotili

MINA53 is a JmjC domain 2-oxoglutarate-dependent oxygenase that catalyzes ribosomal hydroxylation and is a target of the oncogenic transcription factor c-MYC. Despite its anticancer target potential, no small-molecule MINA53 inhibitors are reported. Using ribosomal substrate fragments, we developed mass spectrometry assays for MINA53 and the related oxygenase NO66. These assays enabled the identification of 2-(aryl)alkylthio-3,4-dihydro-4-oxoypyrimidine-5-carboxylic acids as potent MINA53 inhibitors, with selectivity over NO66 and other JmjC oxygenases. Crystallographic studies with the JmjC demethylase KDM5B revealed active site binding but without direct metal chelation; however, molecular modeling investigations indicated that the inhibitors bind to MINA53 by directly interacting with the iron cofactor. The MINA53 inhibitors manifest evidence for target engagement and selectivity for MINA53 over KDM4–6. The MINA53 inhibitors show antiproliferative activity with solid cancer lines and sensitize cancer cells to conventional chemotherapy, suggesting that further work investigating their potential in combination therapies is warranted.