Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Migration behavior of benzobicyclon hydrolysate and associated influencing factors in different agricultural soils
Soil  (IF5.841),  Pub Date : 2021-11-24, DOI: 10.5194/soil-2021-125
Lang Liu, Lei Rao, Wenwen Zhou, Limei Tang, Baotong Li

Abstract. Benzobicyclon is a triketone pro-herbicide that needs to be hydrolyzed to form an active compound benzobicyclon hydrolysate (BH). This study aimed to investigate the migration behavior of BH in different types of agricultural soil and the associated influencing factors. Soil thin-layer chromatography and column leaching tests were used to study the migration behavior of BH in these soils. Based on the mobility retention factor (Rf = 0.34–0.90), the mobility of BH in thin soil layers was ranked in the order Lixisols > Anthrosols > Ferralsols > Phaeozems. The Rf value of BH was linearly positively correlated with soil sand content and pH, and negatively correlated with other physical and chemical properties of soil. BH was difficult to leach in Phaeozems, less difficult to leach in Ferralsols, and easy to leach in Anthrosols and Lixisols. Increasing the BH dosage and rainfall amount or adding humic acid and anionic (dodecyl benzene sulfonic acid) or nonionic (Tween-80) surfactant blocked BH migration in soil columns. In contrast, increasing the leaching solution pH and adding cationic surfactant (cetyl trimethyl ammonium bromide) promoted BH migration in soil columns.BH application has a low risk of groundwater pollution in Phaeozems and Ferralsols, but poses a potential threat to groundwater in Anthrosols and Lixisols.