Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Microbial soil characteristics of grassland and arable soils linked to thermogravimetry data: correlations, use and limits
Soil  (IF5.841),  Pub Date : 2021-11-10, DOI: 10.5194/soil-2021-109
Helena Doležalová-Weissmannová, Stanislav Malý, Martin Brtnický, Jiří Holátko, Michael Scott Demyan, Christian Siewert, David Tokarski, Eliška Kameníková, Jiří Kučerík

Abstract. Thermogravimetry (TG) is a simple method that enables rapid analysis of soil properties such as the content of total organic C, nitrogen, clay and C fractions with different stability. However, the possible link between TG data and microbiological soil properties has not been systematically tested yet and limits TG application for soil and soil organic matter assessment. This work aimed to search and to validate relationships of thermal mass losses (TML) to total C and N contents, microbial biomass C and N, basal and substrate-induced respiration, extractable organic carbon content, anaerobic ammonification, urease activity, short-term nitrification activity, specific growth rate, and time to reach the maximum respiration rate for two sample sets of arable and grassland soils. Analyses of the training soil set revealed significant correlations of TML with basic soil properties such as carbon and nitrogen content with distinguishing linear regression parameters and temperatures of correlating mass losses for arable and grassland soils. In a second stage the equations of significant correlations were used for validation with an independent second sample set. This confirmed applicability of developed equations for prediction of microbiological properties mainly for arable soils. For grassland soils was the applicability lower, which was explained as the influence of rhizosphere processes. Nevertheless, the application of TG can facilitate the understanding of changes in soil caused by microorganism’s activity and the different regression equations between TG and soil parameters reflect changes in proportions between soil components caused by land use management.