Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
State-of-the-art energetic and morphological modelling of the launching site of the M87 jet
Nature Astronomy  (IF14.437),  Pub Date : 2021-11-04, DOI: 10.1038/s41550-021-01506-w
Alejandro Cruz-Osorio, Christian M. Fromm, Yosuke Mizuno, Antonios Nathanail, Ziri Younsi, Oliver Porth, Jordy Davelaar, Heino Falcke, Michael Kramer, Luciano Rezzolla

M87 has been the target of numerous astronomical observations across the electromagnetic spectrum, and very long baseline interferometry has resolved an edge-brightened jet1,2,3,4. However, the origin and formation of its jets remain unclear. In our current understanding, black holes (BH) are the driving engine of jet formation5, and indeed the recent Event Horizon Telescope observations revealed a ring-like structure in agreement with theoretical models of accretion onto a rotating Kerr BH6. In addition to the spin of the BH being a potential source of energy for the launching mechanism, magnetic fields are believed to play a key role in the formation of relativistic jets7,8. A priori, the spin, a, of the BH in M87 is unknown; however, when accounting for the estimates of the X-ray luminosity and jet power, values of \(\left|{a}_{\star }\right|\gtrsim 0.5\) appear favoured6. Besides the properties of the accretion flow and the BH spin, the radiation microphysics including the particle distribution (thermal6 and non-thermal9,10) as well as the particle acceleration mechanism11 play a crucial role. We show that general relativistic magnetohydrodynamic simulations and general relativistic radiative transfer calculations can reproduce the broadband spectrum from the radio to the near-infrared regime and simultaneously match the observed collimation profile of M87, thus allowing us to set rough constraints on the dimensionless spin of M87* to be 0.5 a 1.0, with higher spins being possibly favoured.