Artemy Kolchinsky, David H. Wolpert

In many real-world situations, there are constraints on the ways in which a physical system can be manipulated. We investigate the entropy production (EP) and extractable work involved in bringing a system from some initial distribution $p$ to some final distribution ${p}^{\prime}$, given that the set of master equations available to the driving protocol obeys some constraints. We first derive general bounds on EP and extractable work, as well as a decomposition of the nonequilibrium free energy into an “accessible free energy” (which can be extracted as work, given a set of constraints) and an “inaccessible free energy” (which must be dissipated as EP). In a similar vein, we consider the thermodynamics of information in the presence of constraints and decompose the information acquired in a measurement into “accessible” and “inaccessible” components. This decomposition allows us to consider the thermodynamic efficiency of different measurements of the same system, given a set of constraints. We use our framework to analyze protocols subject to symmetry, modularity, and coarse-grained constraints and consider various examples including the Szilard box, the 2D Ising model, and a multiparticle flashing ratchet.