Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
StomataScorer: a portable and high‐throughput leaf stomata trait scorer combined with deep learning and an improved CV model
Plant Biotechnology Journal  (IF9.803),  Pub Date : 2021-10-30, DOI: 10.1111/pbi.13741
Xiuying Liang, Xichen Xu, Zhiwei Wang, Lei He, Kaiqi Zhang, Bo Liang, Junli Ye, Jiawei Shi, Xi Wu, Mingqiu Dai, Wanneng Yang

To measure stomatal traits automatically and nondestructively, a new method for detecting stomata and extracting stomatal traits was proposed. Two portable microscopes with different resolutions (TipScope with a 40× lens attached to a smartphone and ProScope HR2 with a 400× lens) are used to acquire images of living stomata in maize leaves. FPN model was used to detect stomata in the TipScope images and measure the stomata number and stomatal density. Faster RCNN model was used to detect opening and closing stomata in the ProScope HR2 images, and the number of opening and closing stomata was measured. An improved CV model was used to segment pores of opening stomata, and a total of 6 pore traits were measured. Compared to manual measurements, the square of the correlation coefficient (R2) of the 6 pore traits was higher than 0.85, and the mean absolute percentage error (MAPE) of these traits was 0.02%–6.34%. The dynamic stomata changes between wild-type B73 and mutant Zmfab1a were explored under drought and re-watering condition. The results showed that Zmfab1a had a higher resilience than B73 on leaf stomata. In addition, the proposed method was tested to measure the leaf stomatal traits of other nine species. In conclusion, a portable and low-cost stomata phenotyping method that could accurately and dynamically measure the characteristic parameters of living stomata was developed. An open-access and user-friendly web portal was also developed which has the potential to be used in the stomata phenotyping of large populations in the future.