There are increasing demands to reduce greenhouse gas emissions from agricultural soils worldwide. A significant portion of these emissions occur in cold regions during soil’s freezing and thawing. Focusing on over-winter cropland nitrous oxide (N2O) emissions, a review of 21 relevant peer-reviewed studies with a total of 88 comparisons was conducted to quantify the efficacy of field management practices (no-till, cover crops (CCs), nitrification, and urease inhibitors (NI + UI)) in reducing emissions. We also assessed these mitigation practices’ efficacy across soil types and between cold humid and cold dry areas. The ratio of non-growing season emissions to full-year N2O emissions reported in the studies used in this review ranged between 5 and 91%. No-till significantly reduced N2O emissions by 28%, and this effect was more pronounced in drier climates. NI + UI also significantly reduced over-winter emissions by 23% compared to conventional fertilizers, and this effect was more evident in medium-textured soils than coarse soils. CCs showed an overall reduction potential of 18%; however, this effect was not significant. This review showed that under the CC practice, N2O emissions were reduced overall in humid climates but increased in drier climates, while no-till and NI + UI practices effectively reduced over-winter emissions in both dry and humid winter regions and all soil types.