Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Cryptic transmission of SARS-CoV-2 and the first COVID-19 wave
Nature  (IF49.962),  Pub Date : 2021-10-25, DOI: 10.1038/s41586-021-04130-w
Jessica T. Davis, Matteo Chinazzi, Nicola Perra, Kunpeng Mu, Ana Pastore y Piontti, Marco Ajelli, Natalie E. Dean, Corrado Gioannini, Maria Litvinova, Stefano Merler, Luca Rossi, Kaiyuan Sun, Xinyue Xiong, Ira M. Longini, M. Elizabeth Halloran, Cécile Viboud, Alessandro Vespignani

Considerable uncertainty surrounds the timeline of introductions and onsets of local transmission of SARS-CoV-2 globally1–7. Although a limited number of SARS-CoV-2 introductions were reported in January and February 20208,9, the narrowness of the initial testing criteria, combined with a slow growth in testing capacity and porous travel screening10, left many countries vulnerable to unmitigated, cryptic transmission. Here we use a global metapopulation epidemic model to provide a mechanistic understanding of the early dispersal of infections, and the temporal windows of the introduction and onset of SARS-CoV-2 local transmission in Europe and the United States. We find that community transmission of SARS-CoV-2 was likely in several areas of Europe and the United States by January 2020, and estimate that by early March, only 1 to 3 in 100 SARS-CoV-2 infections were detected by surveillance systems. The modelling results highlight international travel as the key driver of the introduction of SARS-CoV-2 with possible introductions and transmission events as early as December 2019–January 2020. We find a heterogeneous, geographic distribution of cumulative infection attack rates by 4 July 2020, ranging from 0.78%–15.2% across US states and 0.19%–13.2% in European countries. Our approach complements phylogenetic analyses and other surveillance approaches and provides insights that can be used to design innovative, model-driven surveillance systems that guide enhanced testing and response strategies.