Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Active mechanisorption driven by pumping cassettes
Science  (IF47.728),  Pub Date : 2021-10-21, DOI: 10.1126/science.abk1391
Liang Feng, Yunyan Qiu, Qing-Hui Guo, Zhijie Chen, James S. W. Seale, Kun He, Huang Wu, Yuanning Feng, Omar K. Farha, R. Dean Astumian, J. Fraser Stoddart

Over the past century, adsorption has been investigated extensively in equilibrium systems with a focus on the van der Waals interactions associated with physisorption and electronic interactions in the case of chemisorption. Here, we demonstrate mechanisorption, which results from nonequilibrium pumping to form mechanical bonds between the adsorbent and the adsorbate. This active mode of adsorption has been realized on surfaces of metal-organic frameworks grafted with arrays of molecular pumps. Adsorbates are transported from one well-defined compartment—the bulk—to another well-defined compartment—the interface—thereby creating large potential gradients in the form of chemical capacitors wherein energy is stored in metastable states. Mechanisorption extends, in a fundamental manner, the scope and potential of adsorption phenomena and offers a transformative approach to control chemistry at surfaces and interfaces.