Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Biofilm growth under continuous UVC irradiation: Quantitative effects of growth conditions and growth time on intensity response parameters
Water Research  (IF11.236),  Pub Date : 2021-10-11, DOI: 10.1016/j.watres.2021.117747
Hamed Torkzadeh, Ezra L. Cates

Biofilms can harbor a wide range of microorganisms, including opportunistic respiratory pathogens, and their establishment on engineered surfaces poses a risk to public health and industry. The emergence of compact germicidal ultraviolet light-emitting diodes (UV LEDs) may enable their incorporation into confined spaces to inhibit bacterial surface colonization on inaccessible surfaces, such as those in premise plumbing. Such applications necessitate knowledge of the quantitative response of biofilm growth rates to UV exposure on continuously irradiated surfaces. Herein, we performed experiments at varying flow cell temperatures in order to control baseline biofilm growth rates in the absence of UV; then, biofilm growth was compared under the same conditions but with simultaneous UVC irradiation. The inhibiting effect of UV irradiation on biofilm growth kinetics was diminished by more favorable growth conditions (higher temperature). Increasing the temperature by 10 °C resulted in an increase in biovolume by 193% under a UVC (254 nm) intensity of ∼60 µW/cm2. We further fitted an existing intensity response model to the biofilm growth data and analyzed the effects of temperature on model parameters, which were consistent with a hypothesized shielding effect arising from the deposition of extracellular colloidal materials. The shielding effect was found to result in breakthrough behavior of irradiated biofilms after 48 h, wherein accumulation of shielding substances eventually enabled biofilm establishment at even relatively high irradiation intensities (102.3 µW/cm2). With respect to applications of UVC irradiation for biofilm prevention, these results imply that surfaces more prone to bacterial colonization require disproportionately higher-intensity UVC irradiation for prevention of biofilm establishment, and continuous surface irradiation may be inadequate as a sole intervention for biofilm prevention in many scenarios.