Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Vertical Zoning in Hydrothermal U-Ag-Bi-Co-Ni-As Systems: A Case Study from the Annaberg-Buchholz District, Erzgebirge (Germany)
Economic Geology  (IF4.49),  Pub Date : 2021-12-01, DOI: 10.5382/econgeo.4867
Marie Guilcher, Anna Schmaucks, Joachim Krause, Gregor Markl, Jens Gutzmer, Mathias Burisch

The Annaberg-Buchholz district is a classic occurrence of hydrothermal five-element (U-Ag-Bi-Co-Ni-As) veins in the Erzgebirge (Germany) with an historic production of ~8,700 metric tons (t) Co ore, 496 t U ore, and 26.9 t Ag. Multiple mineralization stages are recognized in polyphase veins hosted by Proterozoic paragneiss. Fluorite-barite-Pb-Zn mineralization occurs across the entire vertical profile of the district, whereas U and five-element stages are restricted to the upper 400 m below surface, coinciding with a graphite-rich gneiss lithology.Here, we present field and petrographic observations, electron probe microanalysis and fluid inclusion data, as well as thermodynamic calculations to characterize five-element and fluorite-barite-Pb-Zn associations, and to constrain the origin of the vertical zoning in the Annaberg-Buchholz district. Microthermometric analyses of fluid inclusions related to the fluorite-barite-Pb-Zn stage yield homogenization temperatures between 78° and 140°C and salinities between 21.9 and 27.7 equiv wt % (NaCl-CaCl2). A correlation of fluid inclusion Na/ (Na + Ca) ratios with salinity suggests fluid mixing as a likely precipitation mechanism and relates ore formation tentatively to regional tectonics of the Mesozoic opening of the Atlantic.Thermodynamic calculations indicate that U is more sensitive to reduction than As, predicting that arsenide minerals are precipitated more distally relative to uraninite upon reduction along the fluid-flow path. This implies that the observed vertical zoning is not a primary feature but is the result of hydrothermal remobilization. The observations made in the Annaberg-Buchholz district have general importance to the understanding of U-rich five-element mineralization and may be relevant for exploration targeting in unconformity-related U deposits.