Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Environmental behaviors of (E)-Pyriminobac-methyl in agricultural soils
Soil  (IF5.841),  Pub Date : 2021-10-12, DOI: 10.5194/soil-2021-103
Wenwen Zhou, Haoran Jia, Lang Liu, Baotong Li, Yuqi Li, Meizhu Gao

Abstract. (E)-Pyriminobac-methyl (EPM), a pyrimidine benzoic acid esters herbicide, has a high potential as weedicide; nevertheless, its environmental behaviors are still not well understood. In this study, we systematically investigated for the first time the adsorption–desorption, degradation, and leaching behaviors of EPM in agricultural soils from five exemplar sites in China (characterized by different physicochemical properties) through laboratory simulation experiments. The EPM adsorption–desorption results were well fitted by the Freundlich model (R2 > 0.9999). In the analyzed soils, the Freundlich adsorption (i.e., Kf-ads) and desorption (i.e., Kf-des) coefficients of EPM varied between 0.85–32.22 mg1−1/n L1/n kg−1 and between 0.78–5.02 mg1−1/n L1/n kg−1, respectively. Moreover, the degradation of EPM reflected first-order kinetics: its half-life ranged between 37.46–66.00 d depending on the environmental conditions, and abiotic degradation was predominant in the degradation of this compound. The mobility of EPM in the five soils varied from immobile to highly mobile. The groundwater ubiquity score ranged between 0.9765–2.7160, indicating that EPM posed threat to groundwater quality. Overall, the results of this study demonstrate the easy degradability of EPM, as well as its high adsorption affinity and low mobility in soils with abundant organic matter content and high cation exchange capacity. Under such conditions, there is a relatively low contamination risk for groundwater systems in relation to this compound. At the same time, due to its slow degradation, EPM has a low adsorption affinity and tends to be highly mobile in soils poor in organic matter content and with low cation exchange capacity. Under such conditions, there is a relatively high contamination risk for groundwater systems in relation to this compound. Overall, our findings provide a solid basis for predicting the environmental impacts of EPM.