Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Development and characterization of phasor-based analysis for FLIM to evaluate the metabolic and epigenetic impact of HER2 inhibition on squamous cell carcinoma cultures
Journal of Biomedical Optics  (IF3.17),  Pub Date : 2021-10-01, DOI: 10.1117/1.jbo.26.10.106501
Dan L. Pham, Christina R. Miller, Molly S. Myers, Dominick M. Myers, Laura A. Hansen, Michael G. Nichols

Significance: Deranged metabolism and dysregulated growth factor signaling are closely associated with abnormal levels of proliferation, a recognized hallmark in tumorigenesis. Fluorescence lifetime imaging microscopy (FLIM) of endogenous nicotinamide adenine dinucleotide (NADH), a key metabolic coenzyme, offers a non-invasive, diagnostic indicator of disease progression, and treatment response. The model-independent phasor analysis approach leverages FLIM to rapidly evaluate cancer metabolism in response to targeted therapy. Aim: We combined lifetime and phasor FLIM analysis to evaluate the influence of human epidermal growth factor receptor 2 (HER2) inhibition, a prevalent cancer biomarker, on both nuclear and cytoplasmic NAD(P)H of two squamous cell carcinoma (SCC) cultures. While better established, the standard lifetime analysis approach is relatively slow and potentially subject to intrinsic fitting errors and model assumptions. Phasor FLIM analysis offers a rapid, model-independent alternative, but the sensitivity of the bound NAD(P)H fraction to growth factor signaling must also be firmly established. Approach: Two SCC cultures with low- and high-HER2 expression, were imaged using multiphoton-excited NAD(P)H FLIM, with and without treatment of the HER2 inhibitor AG825. Cells were challenged with mitochondrial inhibition and uncoupling to investigate AG825’s impact on the overall metabolic capacity. Phasor FLIM and lifetime fitting analyses were compared within nuclear and cytoplasmic compartments to investigate epigenetic and metabolic impacts of HER2 inhibition. Results: NAD(P)H fluorescence lifetime and bound fraction consistently decreased following HER2 inhibition in both cell lines. High-HER2 SCC74B cells displayed a more significant response than low-HER2 SCC74A in both techniques. HER2 inhibition induced greater changes in nuclear than cytoplasmic compartments, leading to an increase in NAD(P)H intensity and concentration. Conclusions: The use of both, complementary FLIM analysis techniques together with quantitative fluorescence intensity revealed consistent, quantitative changes in NAD(P)H metabolism associated with inhibition of growth factor signaling in SCC cell lines. HER2 inhibition promoted increased reliance on oxidative phosphorylation in both cell lines.