Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Insights into the sex-dependent reproductive toxicity of 2-ethylhexyl diphenyl phosphate on zebrafish (Danio rerio)
Environment International  (IF9.621),  Pub Date : 2021-10-09, DOI: 10.1016/j.envint.2021.106928
Rongyan Yang, Xiao Wang, Jingwen Wang, Pengyu Chen, Qing Liu, Wenjue Zhong, Lingyan Zhu

As a frequently detected organophosphate ester in various environmental media, the toxic effects of 2-ethylhexyl diphenyl phosphate (EHDPHP) on aquatic organisms of different sexes remain unclear. In this study, adult zebrafish were exposed to 2.5, 50, 250 µg/L of EHDPHP for 21 days to investigate its sex-dependent reproductive toxicity and related mechanisms. EHDPHP exposure significantly inhibited the reproduction of zebrafish, evidenced by the reduced spawning of females, depressed growth and development of their offspring. EHDPHP induced greater impacts on the changes of sex hormones and vitellogenin (VTG) in the males than females. For females, the synthesis of testosterone (T) was inhibited because of the down-regulated gnrhr2, gnrhr3, gnrhr4, gnrh3, gnrh2 and er2β in the brain, while 17β-estradiol (E2) increased in 250 µg/L due to up-regulated cyp19a. For males, the promotion of T was directly related to the up-regulation of fshr, 3βhsd, star, cyp11 and cyp17 in the gonad, and eventually led to the increase of E2. The decrease of plasma 11-KT in both sexes could be mainly attributed to the down-regulation of cyp11b and hsd11b. The plasma VTG decreased in females but increased in males, which was in accordance with the down and up regulation of erα and er2β in the females and males, respectively. All these indicated EHDPHP displayed reproductive toxicity on zebrafish in a sex dependent manner. Molecular docking analysis indicated stronger interaction of EHDPHP with the antagonisms of estrogen receptor (ER) and androgen receptor (AR), as well as the agonism of CYP19A1, which further revealed the sex-dependent reproductive toxicity mechanism of EHDPHP. This study highlights the importance of distinguishing males and females in toxicity evaluation of endocrine disruption chemicals.