Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Stable foliations and CW-structure induced by a Morse–Smale gradient-like flow
Journal of Topology and Analysis  (IF0.457),  Pub Date : 2021-09-30, DOI: 10.1142/s1793525321500527
Alberto Abbondandolo, Pietro Majer

We prove that a Morse–Smale gradient-like flow on a closed manifold has a “system of compatible invariant stable foliations” that is analogous to the object introduced by Palis and Smale in their proof of the structural stability of Morse–Smale diffeomorphisms and flows, but with finer regularity and geometric properties. We show how these invariant foliations can be used in order to give a self-contained proof of the well-known but quite delicate theorem stating that the unstable manifolds of a Morse–Smale gradient-like flow on a closed manifold M are the open cells of a CW-decomposition of M.