Weifang Weng, Zhenya Yan

In this paper, the general triple-pole multi-soliton solutions are proposed for the focusing modified Korteweg–de Vries (mKdV) equation with both nonzero boundary conditions (NZBCs) and triple zeros of analytical scattering coefficients by means of the inverse scattering transform. Furthermore, we also give the corresponding trace formulae and theta conditions. Particularly, we analyze some representative reflectionless potentials containing the triple-pole multi-dark-anti-dark solitons and breathers. The idea can also be extended to the whole mKdV hierarchy (e.g. the fifth-order mKdV equation, and third-fifth-order mKdV equation) with NZBCs and triple zeros of analytical scattering coefficients. Moreover, these obtained triple-pole solutions can also be degenerated to the triple-pole soliton solutions with zero boundary conditions.