Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Tolerance of soil bacterial community to tetracycline antibiotics induced by As, Cd, Zn, Cu, Ni, Cr and Pb pollution
Soil  (IF5.841),  Pub Date : 2021-09-24, DOI: 10.5194/soil-2021-104
Vanesa Santás-Miguel, Avelino Núñez-Delgado, Esperanza Álvarez-Rodríguez, Montserrat Díaz-Raviña, Manuel Arias-Estévez, David Fernández-Calviño

Abstract. The widespread use of both heavy metals and antibiotics in livestock farming and their subsequent arrival on agricultural soils through manure/slurry spreading has become a problem of vital importance for human health and the environment. In the current research, a laboratory experiment was carried out for 42 days to study co-selection for tolerance of three tetracycline antibiotics (tetracycline, TC; oxytetracycline, OTC; chlortetracycline, CTC) in soils polluted with heavy metals (As, Cd, Zn, Cu, Ni, Cr and Pb) at high concentration levels (1000 mg kg−1 of each one, separately). Pollution Induced Community Tolerance (PICT) of the bacterial community was estimated using the leucine incorporation technique. The Log IC50 (logarithm of the concentration causing 50 % inhibition in bacterial community growth) values obtained in uncontaminated soil samples for all the heavy metals tested showed the following toxicity sequence: Cu > As > Cr ≥ Pb ≥ Cd > Zn > Ni. However, in polluted soil samples the toxicity sequence was: Cu > Pb ≥ As ≥ Cd ≥ Cr ≥ Ni ≥ Zn. Moreover, at high metal concentrations the bacterial communities show tolerance to the metal itself, this taking place for all the metals tested in the long term. The bacterial communities of the soil polluted with heavy metals showed also long-term co-tolerance to TC, OTC, and CTC. This kind of studies, focusing on the eventual increases of tolerance and co-tolerance of bacterial communities in agricultural soil, favored by the presence of other pollutants, is of crucial importance, mostly bearing in mind that the appearance of antibiotic resistance genes in soil bacteria could be transmitted to human pathogens.