Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Characterization of cell cycle and apoptosis in Chinese hamster ovary cell culture using flow cytometry for bioprocess monitoring
Biotechnology Progress  (IF2.681),  Pub Date : 2021-09-22, DOI: 10.1002/btpr.3211
Xiaodan Ji, Young Je Lee, Tom Eyster, Alexis Parrillo, Sybille Galosy, Zhaohui Ao, Pramthesh Patel, Yuan Zhu

Chinese hamster ovary (CHO) cells are by far the most important mammalian cell lines used for producing antibodies and other therapeutic proteins. It is critical to fully understand their physiological conditions during a bioprocess in order to achieve the highest productivity and the desired product quality. Flow cytometry technology possesses unique advantages for measuring multiple cellular attributes for a given cell and examining changes in cell culture heterogeneity over time that can be used as metrics for enhanced process understanding and control strategy. Flow cytometry-based assays were utilized to examine the progression of cell cycle and apoptosis in three case studies using different antibody-producing CHO cell lines in both fed-batch and perfusion bioprocesses. In our case studies, we found that G0/G1 phase distribution and early apoptosis accumulation responded to subtle changes in culture conditions, such as pH shifting or momentary glucose depletion. In a perfusion process, flow cytometry provided an insightful understanding of the cell physiological status under a hypothermic condition. More importantly, these changes in cell cycle and apoptosis were not detected by a routine trypan blue exclusion-based cell counting and viability measurement. In summary, integration of flow cytometry into bioprocesses as a process analytical technology tool can be beneficial for establishing optimum process conditions and process control.