Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Soil bacterial community triggered by organic matter inputs supports a high-yielding pear production
Soil  (IF5.841),  Pub Date : 2021-09-21, DOI: 10.5194/soil-2021-95
Li Wang, Xiaomei Ye, Hangwei Hu, Jing Du, Yonglan Xi, Zongzhuan Shen, Jing Lin, Deli Chen

Abstract. The roles of microorganisms in enhancing crop production have been demonstrated for a range of cropping systems. Most studies to date, however, have been confined to a limited number of locations, making it difficult to identify general soil biotic and abiotic characteristics underpinning the yield-promotion across various locations. This knowledge gap limits our capacity to harness soil microbiome to improve crop production. Here we used high-throughput amplicon sequencing to investigate the common features of bacterial community composition, ecological networks and physicochemical properties in six yield-invigorating and adjacent yield-debilitating orchards. We found that yield-invigorating soils exhibited higher contents of organic matter than yield-debilitating soils and harboured unique bacterial communities. Greater alpha diversity and higher relative abundances of Planctomycetes and Chloroflexi were observed in yield-debilitating soils. Co-occurrence network analysis revealed that yield-invigorating soils displayed a greater number of meta-modules and a higher proportion of negative links to positive links. Chloroflexi was recognized as a keystone taxon in manipulating the interaction of bacterial communities in yield-invigorating soils. Structural equation modelling showed that soil organic matter, beta diversity of bacterial community, and network connector (Chloroflexi) were key factors supporting high-yield pear production. Altogether, we provide evidence that yield-invigorating soils across a range of locations appear to share common features, including accumulation of soil organic matter, higher microbial diversity, enrichment of key taxa like Chloroflexi, and maintaining a competitive network. These findings have implications for science-based guidance for sustainable food production.