Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Response inhibition and memory updating in the count/nocount task: an ERP study
Experimental Brain Research  (IF1.972),  Pub Date : 2021-09-07, DOI: 10.1007/s00221-021-06213-6
Zhang, Zhuyun, Jing, Jingyan, Qi, Mingming, Gao, Heming

The present study aimed to separate the neural activities between response inhibition and memory updating processes in the Count/Nocount task. Memory load was manipulated to investigate the memory updating process. Within each trial, participants were asked to count/withhold counting the number of O/X letters in the Count/Nocount task. The participants were asked to silently add 1 if a Count letter was presented in the low load condition, and add 2 in the high load condition. Data from 28 healthy participants showed that: (1) in both high load and low load conditions, the latencies of P2 and N2 components were shorter for the Nocount than Count trials, indicating faster attentional orienting and conflict monitoring processes for the Nocount stimuli (i.e., inhibition processes triggered by the Nocount stimuli against those response execution processes triggered by Count stimuli); (2) more positive frontal P3 amplitudes were evoked for the Nocount relative to the Count stimuli, indicating a more intensive response inhibition process for the Nocount trials; (3) a more positive parietal P3 component was evoked for the low load relative to high load condition, indicating a more intensive working memory updating process for the high load condition. This load effect was absent for the frontal P3 component, suggesting that the frontal P3 might not be associated with the memory updating process. In sum, both the cognitive inhibition process (reflected by the frontal P3 component) and working memory updating process (reflected by the parietal P3 component) appear to be involved in the Count/Nocount task.