Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Optimized Cultivation and Syntrophic Relationship of Anaerobic Benzene-Degrading Enrichment Cultures under Methanogenic Conditions.
Microbes and Environments  (IF2.912),  Pub Date : 2021-01-01, DOI: 10.1264/jsme2.me21028
Hop V Phan,Futoshi Kurisu,Koichiro Kiba,Hiroaki Furumai

Current challenges in the anaerobic bioremediation of benzene are the lack of capable cultures and limited knowledge on the biodegradation pathway. Under methanogenic conditions, benzene may be mineralized by syntrophic interactions between microorganisms, which are poorly understood. The present study developed an optimized formula for anoxic medium to successfully promote the growth of the putative benzene degrader Deltaproteobacterium Hasda-A and enhance the benzene degradation activity of methanogenic enrichment cultures. Within 70 d of incubation, the benzene degradation activity and relative abundance of Hasda-A in cultures in the new defined medium increased from 0.5 to >3 mg L-1 d-1 and from 2.5% to >17%, respectively. Together with Hasda-A, we found a strong positive relationship between the abundances of superphylum OD1 bacteria, three methanogens (Methanoregula, Methanolinea, and Methanosaeta) and benzene degradation activity. The syntrophic relationship between these microbial taxa and Hasda-A was then demonstrated in a correlation analysis of longitudinal data. The involvement of methanogenesis in anaerobic benzene mineralization was confirmed by inhibition experiments. The high benzene degradation activity and growth of Hasda-A were quickly recovered in successive dilutions of enrichment cultures, proving the feasibility of using the medium developed in the present study to produce highly capable cultures. The present results will facilitate practical applications in bioremediation and research on the molecular mechanisms underlying benzene activation and syntrophic interactions in benzene mineralization.