Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Highly Thermal Stable Polyimides Applied in Flexible Resistive Memory
Macromolecular Materials and Engineering  (IF4.367),  Pub Date : 2021-08-25, DOI: 10.1002/mame.202100512
Jyun-Yu Gao, Chun-Kai Chen, Yan-Cheng Lin, Chi-Ching Kuo, Wen-Chang Chen

Flexible memory devices are one of the most crucial elements in the wearable electronics. In this work, polyimides (PIs)-based flexible resistive memory devices with an excellent thermal and mechanical durability are demonstrated. Four kinds of functional PIs are derived from the heterocyclic diamines including 2,6-diaminodibenzo-p-dioxin (OODA) and 2,6-diaminothianthrene, and dianhydrides including 4,4′-(hexafluoroisopropylidene)diphthalic anhydride (6FDA) and 3,3′,4,4′-biphenyltetracarboxylic dianhydride. PI with diamine of OODA and dianhydride of 6FDA (PI(OODA_6FDA)) possesses outstanding thermal and mechanical properties with a high glass transition temperature of 352 °C, a low coefficient of thermal expansion of 28.1 ppm K−1, and a high elongation at break of 10%. In addition, PI(OODA_6FDA)-based memory shows write-once-read-many behavior with a high on/off current ratio of 106 and a stable data retention, attributed to the donor–acceptor charge transfer between the polymer chains. The retained current levels at a low resistive state can be observed even with thermal treatment at 200 °C for 24 h or 1000 times cyclic bending at a bending radius of 5 mm. These results demonstrate the potential of heterocyclic PIs for flexible resistive memory.