Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Formally integrable complex structures on higher dimensional knot spaces
Journal of Symplectic Geometry  (IF0.707),  Pub Date : 2021-07-21, DOI: 10.4310/jsg.2021.v19.n3.a1
Domenico Fiorenza, Hông Vân Lê

Let $S$ be a compact oriented finite dimensional manifold and $M$ a finite dimensional Riemannian manifold, let $\operatorname{Imm}_f (S,M)$ the space of all free immersions $\varphi : S \to M$ and let $B^{+}_{i,f} (S,M)$ the quotient space $\operatorname{Imm}_f (S,M) / \operatorname{Diff}^{+} (S)$, where $\operatorname{Diff}^{+} (S)$ denotes the group of orientation preserving diffeomorphisms of $S$. In this paper we prove that if M admits a parallel $r$-fold vector cross product $\chi \in \Omega^r (M,T M)$ and $\operatorname{dim}S=r -1$ then $B^{+}_{i,f} (S,M)$ is a formally Kähler manifold. This generalizes Brylinski’s, LeBrun’s and Verbitsky’s results for the case that $S$ is a codimension $2$ submanifold in $M$, and $S = S^1$ or $M$ is a torsion-free $G_2$-manifold respectively.