Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Hierarchical porous activated carbon prepared from biowaste of lemon peel for electrochemical double layer capacitors
Biomass & Bioenergy  (IF5.061),  Pub Date : 2021-07-16, DOI: 10.1016/j.biombioe.2021.106175
K. Surya, M.S. Michael

Conversion of bio-waste into activated carbon is an environmentally friendly approach that reduces the pressure on biowaste disposal. Here we describe the preparation of activated carbon from the biowaste of the lemon peel by carbonization at 400 °C followed by chemical activation employing KOH. The activation parameters like temperature and mass ratio of precursor and KOH are optimized to obtain carbon material of better capacitive performance. The mass ratio and temperature of activation are optimized as 1:1 and 600 °C (ALP-600) respectively by systematic analysis of the capacitive performance of carbon materials in acidic (0.5 M H2SO4) and alkaline (2 M KOH) electrolytes. The superior performance of ALP-600 despite its lower surface area (744.78 m2 g-1) is attributed to its hierarchical porosity as the mesopores improve the capacitive performance by providing connectivity between the pores. ALP-600 delivers a higher specific capacitance of 152.14 Fg-1 and better power rate capability evident from the quasi-rectangular shape of cyclic voltammogram even at a higher scan rate of 100 mVs−1 in the acidic electrolyte. The high energy density of 4.67 Whkg−1 and a high-power density of 8113 Wkg-1 is achieved with the symmetric capacitor. The symmetric capacitor of configuration ALP-600 || 0.5 M H2SO4 || ALP-600 exhibits excellent cycling stability over 10,000 cycles with 99.5% coulombic efficiency and insignificant capacitance loss.