Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
The relationship of agonist muscle single motor unit firing rates and elbow extension limb movement kinematics
Experimental Brain Research  (IF1.972),  Pub Date : 2021-07-08, DOI: 10.1007/s00221-021-06168-8
Eric A. Kirk, Charles L. Rice

This study explored the relationship between single motor unit (MU) firing rates (FRs) and limb movement velocity during voluntary shortening contractions when accounting for the effects of time course variability between different kinematic comparisons. Single MU trains recorded by intramuscular electromyography in agonist muscles of the anconeus (n = 15 participants) and lateral head of the triceps brachii (n = 6) were measured during each voluntary shortening contraction. Elbow extension movements consisted of a targeted velocity occurring along the sagittal plane at 25, 50, 75 and 100% of maximum velocity. To account for the effect of differences in contraction time course between parameters, each MU potential was time locked throughout the shortening muscle contraction and linked with separated kinematic parameters of the elbow joint. Across targeted movement velocities, instantaneous FRs were significantly correlated with elbow extension rate of torque development (r = 0.45) and torque (r = 0.40), but FRs were not correlated with velocity (r = 0.03, p = n.s.). Instead, FRs had a weak indirect relationship with limb movement velocity and position assessed through multiple correlation of the stepwise kinematic progression. Results show that voluntary descending synaptic inputs correspond to a more direct relationship between agonist muscle FRs and torque during shortening contractions, but not velocity. Instead, FRs were indirectly correlated to preparing the magnitude of imminent movement velocity of the lagging limb through torque.