Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Stable sample delivery in a viscous medium via a polyimide-based single-channel microfluidic chip for serial crystallography
Journal of Applied Crystallography  (IF3.304),  Pub Date : 2021-07-07, DOI: 10.1107/s1600576721005720
Ki Hyun Nam, Yunje Cho

Serial crystallography (SX) provides room-temperature crystal structures with minimal radiation damage and facilitates the comprehension of molecular dynamics through time-resolved studies. In SX experiments, it is important to deliver a large number of crystal samples to the X-ray interaction point in a serial and stable manner. The advantage of crystal delivery in a viscous medium via a capillary is the ability to deliver all of the crystal samples to the X-ray interaction point at a low flow rate; however, the capillary often breaks during handling and high X-ray absorption can occur at low energy states. This study aimed to develop a stable system for sample delivery in a viscous medium via a polyimide-based single-channel microfluidic (PSM) chip for SX. Since this microfluidic chip comprises a polyimide film, it has high tensile strength and higher X-ray transmittance than a quartz capillary. The PSM chip was connected to a syringe containing the microcrystals embedded in viscous medium. The channel of the PSM chip was aligned to the X-ray path, and the viscous medium containing lysozyme crystals was stably delivered using a syringe pump at a flow rate of 100 nl min−1. Room-temperature lysozyme crystal structures were successfully determined at 1.85 Å resolution. This method would greatly facilitate sample delivery for SX experiments using synchrotron X-rays.