Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
On the μ-invariants of abelian varieties over function fields of positive characteristic
Algebra & Number Theory  (IF0.938),  Pub Date : 2021-05-29, DOI: 10.2140/ant.2021.15.863
King-Fai Lai, Ignazio Longhi, Takashi Suzuki, Ki-Seng Tan, Fabien Trihan

Let A be an abelian variety over a global function field K of characteristic p. We study the μ-invariant appearing in the Iwasawa theory of A over the unramified p-extension of K. Ulmer suggests that this invariant is equal to what he calls the dimension of the Tate–Shafarevich group of A and that it is indeed the dimension of some canonically defined group scheme. Our first result is to verify his suggestions. He also gives a formula for the dimension of the Tate–Shafarevich group (which is now the μ-invariant) in terms of other quantities including the Faltings height of A and Frobenius slopes of the numerator of the Hasse–Weil L-function of AK assuming the conjectural Birch–Swinnerton-Dyer formula. Our next result is to prove this μ-invariant formula unconditionally for Jacobians and for semistable abelian varieties. Finally, we show that the “μ = 0” locus of the moduli of isomorphism classes of minimal elliptic surfaces endowed with a section and with fixed large enough Euler characteristic is a dense open subset.