Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
MMP-2 is a novel histone H3 N-terminal protease necessary for myogenic gene activation
Epigenetics & Chromatin  (IF4.954),  Pub Date : 2021-05-17, DOI: 10.1186/s13072-021-00398-4
Judd C. Rice, Benjamin H. Weekley, Tomas Kanholm, Zhihui Chen, Sunyoung Lee, Daniel J. Fernandez, Rachel Abrahamson, Alessandra Castaldi, Zea Borok, Brian D. Dynlacht, Woojin An

Selective proteolysis of the histone H3 N-terminal tail (H3NT) is frequently observed during eukaryotic development, generating a cleaved histone H3 (H3cl) product within a small, but significant, portion of the genome. Although increasing evidence supports a regulatory role for H3NT proteolysis in gene activation, the nuclear H3NT proteases and the biological significance of H3NT proteolysis remain largely unknown. In this study, established cell models of skeletal myogenesis were leveraged to investigate H3NT proteolysis. These cells displayed a rapid and progressive accumulation of a single H3cl product within chromatin during myoblast differentiation. Using conventional approaches, we discovered that the canonical extracellular matrix (ECM) protease, matrix metalloproteinase 2 (MMP-2), is the principal H3NT protease of myoblast differentiation that cleaves H3 between K18-Q19. Gelatin zymography demonstrated progressive increases in nuclear MMP-2 activity, concomitant with H3cl accumulation, during myoblast differentiation. RNAi-mediated depletion of MMP-2 impaired H3NT proteolysis and resulted in defective myogenic gene activation and myoblast differentiation. Supplementation of MMP-2 ECM activity in MMP-2-depleted cells was insufficient to rescue defective H3NT proteolysis and myogenic gene activation. This study revealed that MMP-2 is a novel H3NT protease and the principal H3NT protease of myoblast differentiation. The results indicate that myogenic signaling induces MMP-2-dependent H3NT proteolysis at early stages of myoblast differentiation. Importantly, the results support the necessity of nuclear MMP-2 H3NT protease activity, independent of MMP-2 activity in the ECM, for myogenic gene activation and proficient myoblast differentiation.