Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Homogeneous non-degenerate 3-(α,δ)-Sasaki manifolds and submersions over quaternionic Kähler spaces
Annals of Global Analysis and Geometry  (IF0.846),  Pub Date : 2021-04-26, DOI: 10.1007/s10455-021-09762-9
Ilka Agricola, Giulia Dileo, Leander Stecker

We show that every 3-\((\alpha ,\delta )\)-Sasaki manifold of dimension \(4n + 3\) admits a locally defined Riemannian submersion over a quaternionic Kähler manifold of scalar curvature \(16n(n+2)\alpha \delta\). In the non-degenerate case we describe all homogeneous 3-\((\alpha ,\delta )\)-Sasaki manifolds fibering over symmetric Wolf spaces and over their non-compact dual symmetric spaces. If \(\alpha \delta > 0\), this yields a complete classification of homogeneous 3-\((\alpha ,\delta )\)-Sasaki manifolds. For \(\alpha \delta < 0\), we provide a general construction of homogeneous 3-\((\alpha , \delta )\)-Sasaki manifolds fibering over non-symmetric Alekseevsky spaces, the lowest possible dimension of such a manifold being 19.