Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Thermal analysis and heat capacity study of even-numbered fatty alcohol (C12H25OH-C18H37OH) phase change materials for thermal energy storage applications
Materials Today Sustainability  (IF4.524),  Pub Date : 2021-03-31, DOI: 10.1016/j.mtsust.2021.100064
Qun Zhang, Huimin Yan, Zhenyu Zhang, Jipeng Luo, Nan Yin, Zhicheng Tan, Quan Shi

Fatty alcohols (FAs) have been widely studied as typical phase change materials (PCMs) for their high latent heat, low under-cooling, non-toxic and low cost in thermal energy storage applications. The thermal properties, especially the heat capacity, play a vital role in designing related energy storage techniques. However, there are few studies on the thermal properties of fatty alcohols systematically investigated in a wide temperature region, which greatly limit their application in thermal energy storage field. In this study, the thermal properties of even-numbered fatty alcohols (C12H25OH-C18H37OH), such as thermal stability, thermal conductivity, phase transition temperature and enthalpy have been systematically investigated using a combination of various thermal analysis and calorimetry methods. The corresponding thermodynamic functions such as the standard molar heat capacity, entropy and enthalpy at 273.15 K and 0.1 MPa have been calculated based on the heat capacity curve fitting. Most importantly, the heat capacities of 1-Tetradecanol (TD) and 1-Hexadecanol (HD) are reported for the first time in the wide temperature range of (1.9 to 370) K. Furthermore, by fitting the heat capacities of FAs, a function of molar heat capacities (Cp) related to the number of carbon atoms (n) and temperature (T) has been established, which can express the heat capacity of fatty alcohols between C12H25OH and C22H45OH reasonably in the temperature region of (50 to 240) K. This work provides accurate and systematic thermodynamic data of FA samples for the future study on their thermodynamic property and related processing design of thermal energy storage application.