Find Paper, Faster
Example:10.1021/acsami.1c06204 or Chem. Rev., 2007, 107, 2411-2502
Electroporation of a hybrid bilayer membrane by scanning electrochemical microscope.
Bioelectrochemistry  (IF5.373),  Pub Date : 2020-07-21, DOI: 10.1016/j.bioelechem.2020.107617
Aušra Valiūnienė,Inga Gabriunaite,Margarita Poderyte,Arunas Ramanavicius

A novel method, suitable for targeted electroporation of hybrid bilayer membranes (hBLMs) by scanning electrochemical microscope (SECM) is introduced by this work. A redox-probe-free system was applied for (i) SECM-based electroporation of a hBLM and for (ii) SECM-based visualization of pores formed by SECM-based electroporation in the hBLM. The hBLM was formed on a glass substrate modified by fluorine-doped tin oxide, and the structure (glass/FTO/hBLM) was used for further investigations. A specific ‘constant-current region’ at 1–30 µm distances between the UME and the hBLM surface was observed in the approach curves, which were registered while a Pt-based ultramicroelectrode (UME) was approaching the glass/FTO/hBLM surface. This ‘constant-current region’ was used as the characteristic feature for characterisation of the hBLM, and by assessment of the approach curves it was possible to distinguish whether an area of the hBLM was electroporated. SECM-based electroporation of the hBLM was performed by using increased potential difference between the reference electrode and the UME. Depending on the duration of the applied potential-pulse and on the distance between the UME and the hBLM surface, irreversible or reversible electroporation of the hBLM was achieved. The data shows that SECM can be successfully applied for both electroporation and characterisation of the hBLM.